مقایسه مدل شبکه عصبی مصنوعی و رگرسیون پارامتری در پیش‌بینی بقای بیماران مبتلا به سرطان معده

نویسندگان

  • بیگلریان, اکبر
  • حاجی زاده, ابراهیم
  • کاظم نژاد, انوشیروان
چکیده مقاله:

Background & Objective: Using parametric models is common approach in survival analysis. In the recent years, artificial neural network (ANN) models have increasingly used in survival prediction. The aim of this study was to predict of survival rate of patients with gastric cancer by using a parametric regression and ANN models and compare these methods. Methods: We used the data of 436 gastric cancer patients from a cancer registry in Tehran between 2002-2007. All patients had a confirmed diagnosis. Data were randomly divided into two groups: training and testing (or validation) set. For analysis of data we used a parametric model (exponential, Weibull, normal, lognormal, logistic and log-logistic models) and a three layer ANN model. In order to compare of the prediction of two models, we used the area under receiver operating characteristic (AUROC) curve, classification table and concordance index. Results: The prediction accuracy of the ANN and the parametric (Weibull) models were 79.45% and 73.97% respectively. The AUROC for the ANN and the Weibull models were 0.815 and 0.748 respectively. Conclusions: The ANN had a better predictions than the Weibull model. Thus it is suggested to use of the ANN model survival prediction in field of cancer.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه‌ی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش‌بینی بقای بیماران مبتلا به سرطان معده

سابقه و هدف: یکی از روش‌های آماری تحلیل داده‌های بقا، مدل رگرسیونی کاکس است که نیازمند پذیره‌هایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر به‌کارگیری مدل شبکه عصبی مصنوعی برای پیش‌بینی داده‌های بقا، افزایش یافته است. این مطالعه به منظور پیش‌بینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روش‌ها: طی سال‌های 1381 لغایت 1385، تعداد ...

متن کامل

مقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان

مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پرون...

متن کامل

مقایسه ی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان معده

سابقه و هدف: یکی از روش های آماری تحلیل داده های بقا، مدل رگرسیونی کاکس است که نیازمند پذیره هایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر به کارگیری مدل شبکه عصبی مصنوعی برای پیش بینی داده های بقا، افزایش یافته است. این مطالعه به منظور پیش بینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روش ها: طی سال های 1381 لغایت 1385، تعداد 4...

متن کامل

مقایسه رگرسیون کاکس و مدل های پارامتریک در تحلیل بقای بیماران مبتلا به سرطان معده

Background & Objectives: Although Cox regression is commonly used to detect relationships between patient survival and demographic/clinical variables, there are situations where parametric models can yield more accurate results. The objective of this study was to compare two survival regression methods, namely Cox regression and parametric models, in patients with gastric carcinoma registered a...

متن کامل

پیش‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎بینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی

  Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, arti...

متن کامل

مقایسه مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش‌بینی بقای بیماران لوسمی حاد

  چکید ه   سابقه و هدف   مدل رگرسیون کاکس، یکی از روش‏های رایج تحلیل داده‏های بقا می‏باشد که قبل از به ‏کارگیری آن لازم است فرض متناسب بودن خطرات برقرار باشد. اخیراً مدل‏های شبکه عصبی بدون نیاز به فرض خاص، جایگزینی مناسب در پیش‏بینی بقا می‏باشند. هدف از این مطالعه، مقایسه‏ توانایی مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش‏بینی بقای بیماران لوسمی حاد بود.   مواد و روش‌ها   در یک مطالعه گذشته‏نگر...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره None

صفحات  22- 27

تاریخ انتشار 2010-12

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023